Simple and complex dynamics for circle maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circle Maps as Simple Oscillators for Complex Behavior: I. Basics

The circle map and its basic properties as non-linear oscillator are discussed and related to other iterative mappings as proposed in the literature. The circle map is the simplest iterative generator for sustained periodic and chaotic sounds and is easy to interpret as a basic sine oscillator with a nonlinear perturbation.

متن کامل

Complex Bounds for Critical Circle Maps

October 1995 Abstract. We use the methods developed with M. Lyubich for proving complex bounds for real quadratics to extend E. De Faria’s complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows. In the Appendix we give an application of the complex bounds for proving local connectivity...

متن کامل

Circle Maps as a Simple Oscillators for Complex Behavior: Ii. Experiments

The circle map is a general non-linear iterated function that maps the circle onto itself. In its standard form it can be interpreted as a simple sinusoidal oscillator which is perturbed by a non-linear term. By varying the strength of the non-linear contribution a rich array of non-linear responses can be achieved, including waveshaping, pitch-bending, period-doubling and highly irregular patt...

متن کامل

Complex Bounds for Renormalization of Critical Circle Maps

We use the methods developed with M. Lyubich for proving complex bounds for real quadratics to extend E. De Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows. As another application of our methods we present a new proof of theorem of C. Pe-tersen on local connectivity of s...

متن کامل

Persistence for Circle Valued Maps

We study circle valued maps and consider the persistence of the homology of their fibers. The outcome is a finite collection of computable invariants which answer the basic questions on persistence and in addition encode the topology of the source space and its relevant subspaces. Unlike persistence of real valued maps, circle valued maps enjoy a different class of invariants called Jordan cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicacions Matemàtiques

سال: 1993

ISSN: 0214-1493

DOI: 10.5565/publmat_37293_05